

Elementary Quantum Mechanics

Mr. Swapnilkumar Subhashrao Kale Assistant Professor Department of Chemistry

n=3

cident photon v target electro

scattered electron

Why we study Elementary Quantum Mechanics

0 kJ

- Origin of quantum numbers
- Quantization of energy level
- Hydrogen atom Spectra.
- Describe nature at microscopic nature

INTRODUCTION

- Elementary: associated with microscopic particles
- Quantum: bundle or packet of energy
- Mechanics: study of particle in motion

Drawbacks of Elementary Quantum Mechanics

- Black Body Radiation
- Photoelectric effect
- Heat Capacities of Solids
- > Initial atomic models

Planck's Quantum Theory

- > To explain black body radiation
- Discontinuous emission or absorption of light
- Quanta: Packets or bundle of energy

Quanta: Max Planck

Photon: Albert Einstein

 $\succ E \propto \vartheta$

E-energy associated with a quantum ϑ - frequency of radiation

 $E = h\vartheta = \frac{hc}{\lambda} = hc\overline{\vartheta}$

The total amount of energy emitted or absorbed by a body will be some whole number multiple of quantum. $E = Nh\vartheta$ Quantization of energy level

Photoelectric effect

- Photoelectric effect
- > Photoelectron
- \succ Threshold frequency ϑ_0
- \succ Work function $\emptyset = h\vartheta$
- \succ K.E. of photoelectron \propto frequency of incident photon (ϑ)
- Number of photoelectron ejected
 intensity of incident photon
- \succ K.E. = $h\vartheta \emptyset$

Compton's ef,fect

- Compton's effect
- > Angle of scattering
- $\succ \lambda_{scattered} > \lambda_{incident}$
- $\succ \text{ Compton's Shift } \Delta \lambda = \lambda_{scattered} \lambda_{incident}$

$$\Delta \lambda = \frac{2h}{mc} \sin^2 \left\{ \frac{\theta}{2} \right\} = \frac{h}{mc} \left(1 - \cos \theta \right)$$

- i) If $\theta = 0^o$, $\Delta \lambda = 0$
- ii) If $\theta = 90^{\circ}$, $\Delta \lambda = 2.42 \ pm$
- iii) If $\theta = 180^{\circ}$, $\Delta \lambda = 4.84 \ pm$

de Broglie hypothesis

- > Explain wave particle duality
- > Wave Nature: diffraction and interference
- Particle nature: photoelectric effect and Compton's effect

$$\succ \lambda \propto \frac{1}{m}$$

The De Broglie Wavelength

- $\lambda =$ wavelength
- h = Planck's constant (6.63 X 10⁻³⁴ J + s)
- p = momentum
- m = mass
- v = speed

Heisenberg's uncertainty Principle

- > Supports de Broglie's hypothesis
- Relation between uncertainty in position and momentum of microscopic particle

 $\Delta x. \Delta p \ge \frac{h}{4\pi}$ $\Delta x. \Delta v \ge \frac{h}{4\pi m}$ $\Delta E. \Delta t \ge \frac{h}{4\pi}$

Thank You